Collaborative Research: Plutons as ingredients for continental crust: Pilot study of the differences between intermediate plutons and lavas in the intra-oceanic Aleutian arc

  • Kelemen, Peter (PI)
  • Hemming, Sidney (CoPI)
  • Goldstein, Steven (CoPI)

Project: Research project

Project Details

Description

Felsic plutonic rocks formed in arcs are buoyant with respect to mantle peridotite over the entire range of relevant pressures and temperatures. They tend to remain at the Earth?s surface, to form the fundamental building blocks of continental crust. In the Aleutians, most felsic plutonic rocks have compositions that overlap estimates for the bulk composition of the continental crust, and that are distinctly different from spatially associated lavas. Understanding the genesis of Aleutian felsic plutonic rocks is a key to understanding continental genesis and evolution via arc magmatism, a key science goal for the MARGINS and GeoPRISMS Initiatives. The PIs will address the following questions: (1) Do Aleutian plutonic rocks have an isotopically distinct source composition, compared to nearby lavas? If they do, this is vitally important since it is commonly assumed that erupted basalts are representative of the magmatic flux from the mantle into arc crust. If not, we will evaluate how they can be explained as the result of different differentiation processes operating on the same parental melt. (2) Has there been compositional variation in the Aleutian arc over time? Do differences between plutonic and volcanic rocks represent temporal evolution of the arc, or different modes of magma transport and emplacement for different magma compositions? And (3) are high viscosity felsic magmas preferentially emplaced in plutons, while low viscosity, mafic magmas preferentially form lavas? What biases does this introduce, when lavas are presumed to be representative of arc magmatic processes and compositions?

Broader Impacts: The Aleutian arc poses numerous hazards to society. Understanding subduction processes helps to predict, avoid, and/or mitigate the hazardous consequences of volcanic eruptions, landslides and earthquakes. During this project, a graduate student will be trained in research, and will likely be able to help design and participate in a larger field research program based on this pilot project.

StatusFinished
Effective start/end date2/15/127/31/14

Funding

  • National Science Foundation: US$99,105.00

ASJC Scopus Subject Areas

  • Geophysics
  • Oceanography
  • Environmental Science(all)

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.