Project Details
Description
Androgen deprivation therapy (ADT) results in castration-resistant prostate cancer (CRPC) in a significant fraction of patients. We have previously reported that the protein levels of interleukin-8 (IL-8) were inversely correlated with disease progression in men with biochemical recurrent prostate cancer treated with Lenalidomide. Recently, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were implicated as potential drivers of CRPC. Here we show that IL-8 expression is upregulated as a consequence of ADT and mediates the recruitment of PMN-MDSCs to the tumor microenvironment. We found that IL-8 expression is regulated by both an inflammatory stimulus (NF-kβ mediated) and loss of androgen receptor (AR) signaling following ADT. We confirmed direct binding of both the p65 subunit of NF-kβ and AR to the IL-8 promoter, and their respective effects on promoter activity. The suppressive activity of AR was further supported by a reduction in active transcription markers at the chromatin level surrounding the IL-8 promoter. Accordingly, intratumoral infiltration of PMN-MDSCs correlated with IL-8 expression, and was reduced in IL-8 knockouts. Taken together, these results suggest an innate inflammatory response, loss of AR suppressive activity, and subsequent chemokine upregulation as a potential mechanism that regulates the infiltration of PMN-MDSCs to the tumor microenvironment of CRPC after ADT. These findings open a window of opportunity for therapeutic interventions aiming to improve responses to checkpoint blockade in prostate cancer.
Status | Active |
---|---|
Effective start/end date | 3/27/19 → … |
Funding
- Prostate Cancer Foundation
ASJC Scopus Subject Areas
- Cancer Research
- Oncology
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.