Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging

Olimpo García-Beltrán, Bruce K. Cassels, Claudio Pérez, Natalia Mena, Marco T. Núñez, Natalia P. Martínez, Paulina Pavez, Margarita E. Aliaga

Research output: Contribution to journalArticlepeer-review

83 Citations (Scopus)

Abstract

Two new coumarin-based "turn-off" fluorescent probes, (E)-3-((3,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2), were synthesized and their detection of copper(II) and iron(III) ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3) and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II) or iron(III) ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10-5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

Original languageEnglish
Pages (from-to)1358-1371
Number of pages14
JournalSensors
Volume14
Issue number1
DOIs
Publication statusPublished - Jan 13 2014

ASJC Scopus Subject Areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging'. Together they form a unique fingerprint.

Cite this