Immobilization modulates macrophage accumulation in tendon-bone healing

Elias Dagher, Peyton L. Hays, Sumito Kawamura, Jon Godin, Xiang Hua Deng, Scott A. Rodeo

Research output: Contribution to journalArticlepeer-review

58 Citations (Scopus)

Abstract

Tendon-to-bone healing occurs by formation of a fibrous, scar tissue interface rather than regeneration of a normal insertion. Because inflammatory cells such as macrophages lead to formation of fibrous scar tissue, we hypothesized immobilization would allow resolution of acute inflammation and result in improved tendon-bone healing. We reconstructed the ACL of 60 Sprague-Dawley rats using a tendon autograft. An external fixation device was used to immobilize the surgically treated knee in 30 rats. We evaluated tendon-bone interface width, collagen fiber continuity, and new osteoid formation histologically. Immunohistochemistry was used to localize ED1+ and ED2+ macrophages at the tendon-bone interface at 2 and 4 weeks. Biomechanical testing was performed at 4 weeks. Interface width was smaller and collagen fiber continuity was greater in the immobilized group. Immobilized animals exhibited fewer ED1+ macrophages at the healing interface at 2 and 4 weeks. In contrast, there were more ED2+ macrophages at the interface in the immobilized group at 2 weeks. Failure load and stiffness were similar between groups at 4 weeks. The data suggest early immobilization diminishes macrophage accumulation and may allow improved tendon-bone integration

Original languageEnglish
Pages (from-to)281-287
Number of pages7
JournalClinical Orthopaedics and Related Research
Volume467
Issue number1
DOIs
Publication statusPublished - Jan 2009

ASJC Scopus Subject Areas

  • Surgery
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Immobilization modulates macrophage accumulation in tendon-bone healing'. Together they form a unique fingerprint.

Cite this