TY - JOUR
T1 - Increased Ca2+ signaling through CaV 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties
AU - Li, Haiyin
AU - Korcari, Antonion
AU - Ciufo, David
AU - Mendias, Christopher L.
AU - Rodeo, Scott A.
AU - Buckley, Mark R.
AU - Loiselle, Alayna E.
AU - Pitt, Geoffrey S.
AU - Cao, Chike
N1 - Publisher Copyright:
© 2023 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.
PY - 2023/7/1
Y1 - 2023/7/1
N2 - Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone, and cartilage development and homeostasis, knowledge about Ca2+ signaling and the source of Ca2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca2+ signaling through CaV 1.2 voltage-gated Ca2+ channel in tendon formation. Using a reporter mouse, we found that CaV 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;CaV 1.2TS mice that express a gain-of-function mutant CaV 1.2 in tendon. We found that mutant tendons were hypertrophic, with more tendon fibroblasts but decreased cell density. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendons. Biomechanical testing revealed that the hypertrophic tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomic analysis showed no significant difference in the abundance of type I and III collagens, but mutant tendons had about two-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2, and cathepsin K. Taken together, these data highlight roles for increased Ca2+ signaling through CaV 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.
AB - Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone, and cartilage development and homeostasis, knowledge about Ca2+ signaling and the source of Ca2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca2+ signaling through CaV 1.2 voltage-gated Ca2+ channel in tendon formation. Using a reporter mouse, we found that CaV 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;CaV 1.2TS mice that express a gain-of-function mutant CaV 1.2 in tendon. We found that mutant tendons were hypertrophic, with more tendon fibroblasts but decreased cell density. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendons. Biomechanical testing revealed that the hypertrophic tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomic analysis showed no significant difference in the abundance of type I and III collagens, but mutant tendons had about two-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2, and cathepsin K. Taken together, these data highlight roles for increased Ca2+ signaling through CaV 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.
UR - http://www.scopus.com/inward/record.url?scp=85160968039&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85160968039&partnerID=8YFLogxK
U2 - 10.1096/fj.202300607R
DO - 10.1096/fj.202300607R
M3 - Article
C2 - 37261735
AN - SCOPUS:85160968039
SN - 0892-6638
VL - 37
SP - e23007
JO - FASEB Journal
JF - FASEB Journal
IS - 7
ER -