TY - JOUR
T1 - Post-transcriptional Stimulation of the Assembly and Secretion of Triglyceride-rich Apolipoprotein B Lipoproteins in a Mouse with Selective Deficiency of Brown Adipose Tissue, Obesity, and Insulin Resistance
AU - Siri, Patty
AU - Candela, Ninfa
AU - Zhang, Yuan Li
AU - Ko, Carol
AU - Eusufzai, Sharif
AU - Ginsberg, Henry N.
AU - Huang, Li Shin
PY - 2001/12/7
Y1 - 2001/12/7
N2 - A mouse model of insulin resistance and its associated dyslipidemia was generated by crossing mice expressing human apolipoprotein B (apoB) with mice lacking only brown adipose tissue (BATless). On a high fat diet, male apoB/BATless mice became obese, hypercholesterolemic, hypertriglyceridemic, and hyperinsulinemic compared with control apoB mice. Fast performance liquid chromatography revealed increased triglyceride concentrations in intermediate density lipoprotein/low density lipoprotein (LDL) and reduced high density lipoprotein cholesterol concentrations. Inhibition of lipolysis by the drug, tetrahydrolipostatin, demonstrated that very low density lipoprotein-sized particles were initially secreted. Metabolic studies employing Triton WR-1339 and either [3H]glycerol or [3H]palmitate showed that the hypertriglyceridemia in apoB/BATless mice was due to the increased synthesis and secretion of triglyceride. Furthermore, lipoprotein lipase and hepatic lipase activities were not defective. ApoB was also secreted at increased rates in the apoB/BATless mice. Similar levels of apoB mRNA in apoB and apoB/BATless mice indicated that apoB secretion was regulated post-transcriptionally. LDL receptor mRNA was increased in the apoB/BATless mice, indicating that the observed increase in apoB-lipoprotein secretion was not due to their decreased reuptake. Finally, mRNA levels of the large subunit of microsomal triglyceride transfer protein, a required component for very low density protein assembly, were not different between apoB and apoB/BATless mice. This rodent model should prove useful in exploring mechanisms underlying the regulation of apoB secretion in the context of insulin resistance.
AB - A mouse model of insulin resistance and its associated dyslipidemia was generated by crossing mice expressing human apolipoprotein B (apoB) with mice lacking only brown adipose tissue (BATless). On a high fat diet, male apoB/BATless mice became obese, hypercholesterolemic, hypertriglyceridemic, and hyperinsulinemic compared with control apoB mice. Fast performance liquid chromatography revealed increased triglyceride concentrations in intermediate density lipoprotein/low density lipoprotein (LDL) and reduced high density lipoprotein cholesterol concentrations. Inhibition of lipolysis by the drug, tetrahydrolipostatin, demonstrated that very low density lipoprotein-sized particles were initially secreted. Metabolic studies employing Triton WR-1339 and either [3H]glycerol or [3H]palmitate showed that the hypertriglyceridemia in apoB/BATless mice was due to the increased synthesis and secretion of triglyceride. Furthermore, lipoprotein lipase and hepatic lipase activities were not defective. ApoB was also secreted at increased rates in the apoB/BATless mice. Similar levels of apoB mRNA in apoB and apoB/BATless mice indicated that apoB secretion was regulated post-transcriptionally. LDL receptor mRNA was increased in the apoB/BATless mice, indicating that the observed increase in apoB-lipoprotein secretion was not due to their decreased reuptake. Finally, mRNA levels of the large subunit of microsomal triglyceride transfer protein, a required component for very low density protein assembly, were not different between apoB and apoB/BATless mice. This rodent model should prove useful in exploring mechanisms underlying the regulation of apoB secretion in the context of insulin resistance.
UR - http://www.scopus.com/inward/record.url?scp=0035824678&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035824678&partnerID=8YFLogxK
U2 - 10.1074/jbc.M108909200
DO - 10.1074/jbc.M108909200
M3 - Article
C2 - 11598138
AN - SCOPUS:0035824678
SN - 0021-9258
VL - 276
SP - 46064
EP - 46072
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 49
ER -