TY - JOUR
T1 - Growth Factor Delivery to a Cartilage-Cartilage Interface Using Platelet-Rich Concentrates on a Hyaluronic Acid Scaffold
AU - Titan, Ashley
AU - Schär, Michael
AU - Hutchinson, Ian
AU - Demange, Marco
AU - Chen, Tony
AU - Rodeo, Scott
N1 - Publisher Copyright:
© 2019 Arthroscopy Association of North America
PY - 2020/5
Y1 - 2020/5
N2 - Purpose: To determine whether (1) human leukocyte-platelet-rich plasma (L-PRP) or (2) leukocyte-platelet-rich fibrin (L-PRF) delivered on a hyaluronic acid (HA) scaffold at a bovine chondral defect, a simulated cartilage tear interface, in vitro would improve tissue formation based on biomechanical, histologic, and biochemical measures. Methods: L-PRF and L-PRP were prepared from 3 healthy volunteer donors and delivered in conjunction with HA scaffolds to defects created in full-thickness bovine cartilage plugs harvested from bovine femoral condyle and trochlea. Specimens were cultured in vitro for up to 42 days. Treatment groups included an HA scaffold alone and scaffolds containing L-PRF or L-PRP. Cartilage repair was assessed using biomechanical testing, histology, DNA quantification, and measurement of sulfated glycosaminoglycan and collagen content at 28 and 42 days. Results: L-PRF elicited the greatest degree of defect filling and improvement in other histologic measures. L-PRF–treated specimens also had the greatest cellularity when compared with L-PRP and control at day 28 (560.4 μg vs 191.4 μg vs 124.2 μg, P = .15); at day 48, there remained a difference, although not significant, between L-PRF versus L-PRP (761.1 μg vs 589.3 μg, P = .219) . L-PRF had greater collagen deposition when compared with L-PRP at day 42 (40.1 μg vs 16.3 μg, P < .0001). L-PRF had significantly greater maximum interfacial strength compared with the control at day 42 (10.92 N vs 0.66 N, P = .015) but had no significant difference compared with L-PRP (10.92 N vs 6.58 N, P = .536). L-PRP facilitated a greater amount of sulfated glycosaminoglycan production at day 42 when compared with L-PRF (15.9 μg vs 4.3 μg, P = .009). Conclusions: Delivery of leukocyte-rich platelet concentrates in conjunction with a HA scaffold may allow for improvements in cartilage healing through different pathways. L-PRF was not superior to L-PRP in its biomechanical strength, suggesting that both treatments may be effective in improving biomechanical strength of healing cartilage through different pathways. Clinical Relevance: The delivery of platelet-rich concentrates in conjunction HA scaffolds may augment healing cartilaginous injuries.
AB - Purpose: To determine whether (1) human leukocyte-platelet-rich plasma (L-PRP) or (2) leukocyte-platelet-rich fibrin (L-PRF) delivered on a hyaluronic acid (HA) scaffold at a bovine chondral defect, a simulated cartilage tear interface, in vitro would improve tissue formation based on biomechanical, histologic, and biochemical measures. Methods: L-PRF and L-PRP were prepared from 3 healthy volunteer donors and delivered in conjunction with HA scaffolds to defects created in full-thickness bovine cartilage plugs harvested from bovine femoral condyle and trochlea. Specimens were cultured in vitro for up to 42 days. Treatment groups included an HA scaffold alone and scaffolds containing L-PRF or L-PRP. Cartilage repair was assessed using biomechanical testing, histology, DNA quantification, and measurement of sulfated glycosaminoglycan and collagen content at 28 and 42 days. Results: L-PRF elicited the greatest degree of defect filling and improvement in other histologic measures. L-PRF–treated specimens also had the greatest cellularity when compared with L-PRP and control at day 28 (560.4 μg vs 191.4 μg vs 124.2 μg, P = .15); at day 48, there remained a difference, although not significant, between L-PRF versus L-PRP (761.1 μg vs 589.3 μg, P = .219) . L-PRF had greater collagen deposition when compared with L-PRP at day 42 (40.1 μg vs 16.3 μg, P < .0001). L-PRF had significantly greater maximum interfacial strength compared with the control at day 42 (10.92 N vs 0.66 N, P = .015) but had no significant difference compared with L-PRP (10.92 N vs 6.58 N, P = .536). L-PRP facilitated a greater amount of sulfated glycosaminoglycan production at day 42 when compared with L-PRF (15.9 μg vs 4.3 μg, P = .009). Conclusions: Delivery of leukocyte-rich platelet concentrates in conjunction with a HA scaffold may allow for improvements in cartilage healing through different pathways. L-PRF was not superior to L-PRP in its biomechanical strength, suggesting that both treatments may be effective in improving biomechanical strength of healing cartilage through different pathways. Clinical Relevance: The delivery of platelet-rich concentrates in conjunction HA scaffolds may augment healing cartilaginous injuries.
UR - http://www.scopus.com/inward/record.url?scp=85079063357&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85079063357&partnerID=8YFLogxK
U2 - 10.1016/j.arthro.2019.12.004
DO - 10.1016/j.arthro.2019.12.004
M3 - Article
C2 - 31862290
AN - SCOPUS:85079063357
SN - 0749-8063
VL - 36
SP - 1431
EP - 1440
JO - Arthroscopy - Journal of Arthroscopic and Related Surgery
JF - Arthroscopy - Journal of Arthroscopic and Related Surgery
IS - 5
ER -