TY - JOUR
T1 - The Role of Indian Hedgehog Signaling in Tendon Response to Subacromial Impingement
T2 - Evaluation Using a Mouse Model
AU - Liu, Yulei
AU - Deng, Xiang Hua
AU - Zhang, Xueying
AU - Cong, Ting
AU - Chen, Daoyun
AU - Hall, Arielle Jordan
AU - Ying, Liang
AU - Rodeo, Scott A.
N1 - Publisher Copyright:
© 2021 The Author(s).
PY - 2022/2
Y1 - 2022/2
N2 - Background: The underlying cellular and molecular mechanisms involved in the development of tendinopathy due to subacromial supraspinatus tendon (SST) impingement and the response to subsequent removal of impingement remain unknown. Purpose: To investigate the involvement of Indian hedgehog (IHH) signaling in the development of SST tendinopathy and the subsequent healing process after the relief of subacromial impingement in a novel mouse shoulder impingement model. Study Design: Controlled laboratory study. Methods: A total of 48 male wild-type C57BL/6 mice were used in this study. Supraspinatus tendinopathy was induced by inserting a microsurgical clip into the subacromial space bilaterally. Eleven mice were sacrificed at 4 weeks after surgery to establish impingement baseline; 24 mice underwent clip removal at 4 weeks after surgery and then were euthanized at 2 or 4 weeks after clip removal. Thirteen mice without surgical intervention were utilized as the control group. All SSTs were evaluated with biomechanical testing; quantitative histomorphometry after staining with hematoxylin and eosin, Alcian blue, and picrosirius red; and immunohistochemical staining (factor VIII, IHH, Patched1 [PTCH1], and glioma-associated oncogene homolog 1 [GLI1]). Results: The mean failure force and stiffness in the 4-week impingement group decreased significantly compared with the control group (P <.001) and gradually increased at 2 and 4 weeks after clip removal. Histological analysis demonstrated increased cellularity and disorganized collagen fibers in the SST, with higher modified Bonar scores at 4 weeks, followed by gradual improvement after clip removal. The IHH-positive area and PTCH1- and GLI1-positive cell percentages significantly increased after 4 weeks of clip impingement (20.64% vs 2.06%, P <.001; 53.9% vs 28.03%, P =.016; and 30% vs 12.19%, P =.036, respectively) and continuously increased after clip removal. Conclusion: The authors’ findings suggest that the hedgehog signaling pathway and its downstream signaling mediator and target GLI1 may play a role in the development and healing process of rotator cuff tendinopathy due to extrinsic rotator cuff impingement. Clinical Relevance: This study suggests the potential for the hedgehog pathway, together with its downstream targets, as candidates for further study as potential therapeutic targets in the treatment of supraspinatus tendinopathy.
AB - Background: The underlying cellular and molecular mechanisms involved in the development of tendinopathy due to subacromial supraspinatus tendon (SST) impingement and the response to subsequent removal of impingement remain unknown. Purpose: To investigate the involvement of Indian hedgehog (IHH) signaling in the development of SST tendinopathy and the subsequent healing process after the relief of subacromial impingement in a novel mouse shoulder impingement model. Study Design: Controlled laboratory study. Methods: A total of 48 male wild-type C57BL/6 mice were used in this study. Supraspinatus tendinopathy was induced by inserting a microsurgical clip into the subacromial space bilaterally. Eleven mice were sacrificed at 4 weeks after surgery to establish impingement baseline; 24 mice underwent clip removal at 4 weeks after surgery and then were euthanized at 2 or 4 weeks after clip removal. Thirteen mice without surgical intervention were utilized as the control group. All SSTs were evaluated with biomechanical testing; quantitative histomorphometry after staining with hematoxylin and eosin, Alcian blue, and picrosirius red; and immunohistochemical staining (factor VIII, IHH, Patched1 [PTCH1], and glioma-associated oncogene homolog 1 [GLI1]). Results: The mean failure force and stiffness in the 4-week impingement group decreased significantly compared with the control group (P <.001) and gradually increased at 2 and 4 weeks after clip removal. Histological analysis demonstrated increased cellularity and disorganized collagen fibers in the SST, with higher modified Bonar scores at 4 weeks, followed by gradual improvement after clip removal. The IHH-positive area and PTCH1- and GLI1-positive cell percentages significantly increased after 4 weeks of clip impingement (20.64% vs 2.06%, P <.001; 53.9% vs 28.03%, P =.016; and 30% vs 12.19%, P =.036, respectively) and continuously increased after clip removal. Conclusion: The authors’ findings suggest that the hedgehog signaling pathway and its downstream signaling mediator and target GLI1 may play a role in the development and healing process of rotator cuff tendinopathy due to extrinsic rotator cuff impingement. Clinical Relevance: This study suggests the potential for the hedgehog pathway, together with its downstream targets, as candidates for further study as potential therapeutic targets in the treatment of supraspinatus tendinopathy.
UR - http://www.scopus.com/inward/record.url?scp=85121550105&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121550105&partnerID=8YFLogxK
U2 - 10.1177/03635465211062244
DO - 10.1177/03635465211062244
M3 - Article
C2 - 34904906
AN - SCOPUS:85121550105
SN - 0363-5465
VL - 50
SP - 362
EP - 370
JO - American Journal of Sports Medicine
JF - American Journal of Sports Medicine
IS - 2
ER -