Détails sur le projet
Description
PROJECT SUMMARY
The incidence of melanoma has doubled in the last three decades and is projected to exceed 100,000 cases in
the US in 2020. Almost 7,000 people died of melanoma in the US in 2019. Melanoma has a strong propensity
to spread both via lymphatic and hematogenous routes. The most common sites of metastasis include lymph
nodes, lung, liver and brain. Although novel therapies, such as immunotherapies have improved survival of
patients with metastatic disease, metastatic patterns can influence responses to such therapies. In particular,
patients with metastases to the liver have a lower response and survival rates in response to immune checkpoint
inhibitors compared to patients with metastases to other organs. The molecular underpinnings of liver metastasis
development and the impact on drug response and resistance are poorly understood. This is in part due to limited
pre-clinical models that resembles metastatic patterns seen in patients, and a sparsity of genomic
characterization of human liver metastatic lesions. The goal of this proposal is to determine drivers of melanoma
liver metastasis (MLM) and mechanisms of associated resistance to immunotherapies. For this purpose, we
characterized and used a novel syngeneic mouse model that faithfully recapitulates genomic, metastatic and
response patterns seen in patients. We performed a large-scale in vivo CRISPR-Cas9 screen and identified
perturbations that promote development of MLM, but not primary tumor growth or metastasis to other organ
sites. In the first aim of this proposal, we elucidate the cell intrinsic signaling mechanisms promoting MLM. Next,
using integrated high-plex imaging, immune-profiling and single-cell sequencing, we determine the immune
infiltrates of MLM and concurrent lung metastases and how the immune compartment impacts the response to
clinically used immunotherapies. Finally, we assembled a large cohort of patient biopsies from liver metastases
and concurrent metastases from other organ sites as well as peripheral blood mononuclear cells (PBMCs) for
genomic and immune profiling. Together, these studies will provide a landscape of genomic determinants,
signaling mechanisms and immune environments of MLM and their impact on responses to immunotherapies
and have the potential to identify novel avenues for rationale drug development.
Statut | Terminé |
---|---|
Date de début/de fin réelle | 3/1/22 → 2/28/23 |
Financement
- National Cancer Institute: 394 856,00 $ US
Keywords
- Investigación sobre el cáncer
- Inmunología
- Oncología
Empreinte numérique
Explorer les sujets de recherche abordés dans ce projet. Ces étiquettes sont créées en fonction des prix/bourses sous-jacents. Ensemble, ils forment une empreinte numérique unique.