Détails sur le projet
Description
Ice sheets lose ice mass through gravity-driven flow to the ocean where ice breaks into icebergs and melts, contributing to global sea level rise. Water commonly found at the base of ice sheets facilitates this process by lubricating the ice-rock interface. The recent discovery of vast, kilometer-thick groundwater reservoirs beneath the Antarctic Ice Sheet thus raises important questions about the potential impact of groundwater on ice flow. It has been hypothesized that groundwater flow to the ice-sheet bed may accelerate ice flow as the ice sheet shrinks in response to global warming. Evaluating this hypothesis is challenging due to poorly understood interactions between water, ice, and rock, but is crucial for anticipating the response of ice sheets and sea level to climate change. Understanding how groundwater responds to a changing ice sheet also has important implications for the heat, chemical elements, and microorganisms it stores and transports.To assess the impact of groundwater processes on ice dynamics, a new idealized modeling framework will be developed, incorporating several novel hydromechanical couplings between ice sheets, subglacial drainage systems, and groundwater aquifers. This framework will enable testing the hypotheses that (1) aquifers decelerate ice mass loss in the absence of a well-developed subglacial drainage system, but that (2) an efficient, channelized drainage system can reduce and even reverse this decelerating effect, and that (3) the impact of these phenomena is most pronounced for steep ice flowing rapidly over thick sedimentary basins and depends in a complex way on aquifer permeability. Existing geodetic, seismic, and other geophysical datasets at well-studied Thwaites Glacier and Whillans Ice Stream will be used to constrain model parameters and investigate the impact of groundwater processes in contrasting glaciologic settings. This work will help rule out or highlight subglacial groundwater as one of the next major challenges for efforts to predict the future of the Antarctic Ice Sheet and sea-level rise on decadal to millennial timescales. The project will contribute to educating the next generation of scientists by supporting an early-career PI and a graduate student, as well as participation in a field and research educational program in Alaska and the production of chapters for an online, open-source, free interactive textbook.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Statut | Actif |
---|---|
Date de début/de fin réelle | 9/1/24 → 8/31/26 |
Keywords
- Ciencias del agua y tecnología
- Ciencias planetarias y de la Tierra (todo)
Empreinte numérique
Explorer les sujets de recherche abordés dans ce projet. Ces étiquettes sont créées en fonction des prix/bourses sous-jacents. Ensemble, ils forment une empreinte numérique unique.