Estimating individualized treatment rules for multicategory type 2 diabetes treatments using electronic health records

Jitong Lou, Yuanjia Wang, Lang Li, Donglin Zeng

Résultat de rechercheexamen par les pairs

Résumé

In this article, we propose a general framework to learn optimal treatment rules for type 2 diabetes (T2D) patients using electronic health records (EHRs). We first propose a joint modeling approach to characterize patient’s pretreatment conditions using longitudinal markers from EHRs. The estimation accounts for informative measurement times using inverse-intensity weighting methods. The predicted latent processes in the joint model are used to divide patients into a finite of subgroups and, within each group, patients share similar health profiles in EHRs. Within each patient group, we estimate optimal individualized treatment rules by extending a matched learning method to handle multicategory treatments using a one-versus-one approach. Each matched learning for two treatments is implemented by a weighted support vector machine with matched pairs of patients. We apply our method to estimate optimal treatment rules for T2D patients in a large sample of EHRs from the Ohio State University Wexner Medical Center. We demonstrate the utility of our method to select the optimal treatments from four classes of drugs and achieve a better control of glycated hemoglobin than any one-size-fits-all rules.

Langue d'origineEnglish
Pages (de-à)503-515
Nombre de pages13
JournalStatistics and its Interface
Volume16
Numéro de publication4
DOI
Statut de publicationPublished - 2023

Financement

Bailleurs de fondsNuméro du bailleur de fonds
National Institutes of HealthGM124104, NS073671, MH117458

    ASJC Scopus Subject Areas

    • Statistics and Probability
    • Applied Mathematics

    Empreinte numérique

    Plonger dans les sujets de recherche 'Estimating individualized treatment rules for multicategory type 2 diabetes treatments using electronic health records'. Ensemble, ils forment une empreinte numérique unique.

    Citer