Models and properties of power-law adaptation in neural systems

Patrick J. Drew, L. F. Abbott

Résultat de rechercheexamen par les pairs

117 Citations (Scopus)

Résumé

Many biological systems exhibit complex temporal behavior that cannot be adequately characterized by a single time constant. This dynamics, observed from single channels up to the level of human psychophysics, is often better described by power-law rather than exponential dependences on time. We develop and study the properties of neural models with scale-invariant, power-law adaptation and contrast them with the more commonly studied exponential case. Responses of an adapting firing-rate model to constant, pulsed, and oscillating inputs in both the power-law and exponential cases are considered. We construct a spiking model with power-law adaptation based on a nested cascade of processes and show that it can be "programmed" to produce a wide range of time delays. Finally, within a network model, we use power-law adaptation to reproduce long-term features of the tilt aftereffect.

Langue d'origineEnglish
Pages (de-à)826-833
Nombre de pages8
JournalJournal of Neurophysiology
Volume96
Numéro de publication2
DOI
Statut de publicationPublished - 2006

Financement

Bailleurs de fondsNuméro du bailleur de fonds
National Institute of Mental HealthR01MH058754

    ASJC Scopus Subject Areas

    • General Neuroscience
    • Physiology

    Empreinte numérique

    Plonger dans les sujets de recherche 'Models and properties of power-law adaptation in neural systems'. Ensemble, ils forment une empreinte numérique unique.

    Citer