Product-limit Estimators and Cox Regression with Missing Censoring Information

Ian W. McKeague, Sundarraman Subramanian

Résultat de rechercheexamen par les pairs

34 Citations (Scopus)

Résumé

The Kaplan-Meier estimator of a survival function requires that the censoring indicator is always observed. A method of survival function estimation is developed when the censoring indicators are missing completely at random (MCAR). The resulting estimator is a smooth functional of the Nelson-Aalen estimators of certain cumulative transition intensities. The asymptotic properties of this estimator are derived. A simulation study shows that the proposed estimator has greater efficiency than competing MCAR-based estimators. The approach is extended to the Cox model setting for the estimation of a conditional survival function given a covariate.

Langue d'origineEnglish
Pages (de-à)589-601
Nombre de pages13
JournalScandinavian Journal of Statistics
Volume25
Numéro de publication4
DOI
Statut de publicationPublished - déc. 1998

ASJC Scopus Subject Areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Empreinte numérique

Plonger dans les sujets de recherche 'Product-limit Estimators and Cox Regression with Missing Censoring Information'. Ensemble, ils forment une empreinte numérique unique.

Citer