TY - JOUR
T1 - Soluble Interleukin-6 Receptor Regulates Interleukin-6-Dependent Vascular Remodeling in Long-Distance Runners
AU - Villar-Fincheira, Paulina
AU - Paredes, Aaron J.
AU - Hernández-Díaz, Tomás
AU - Norambuena-Soto, Ignacio
AU - Cancino-Arenas, Nicole
AU - Sanhueza-Olivares, Fernanda
AU - Contreras-Briceño, Felipe
AU - Mandiola, Jorge
AU - Bruneau, Nicole
AU - García, Lorena
AU - Ocaranza, María Paz
AU - Troncoso, Rodrigo
AU - Gabrielli, Luigi
AU - Chiong, Mario
N1 - Publisher Copyright:
© Copyright © 2021 Villar-Fincheira, Paredes, Hernández-Díaz, Norambuena-Soto, Cancino-Arenas, Sanhueza-Olivares, Contreras-Briceño, Mandiola, Bruneau, García, Ocaranza, Troncoso, Gabrielli and Chiong.
PY - 2021/10/11
Y1 - 2021/10/11
N2 - Little is known about the effects of training load on exercise-induced plasma increase of interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) and their relationship with vascular remodeling. We sought to evaluate the role of sIL 6R as a regulator of IL-6-induced vascular remodeling. Forty-four male marathon runners were recruited and allocated into two groups: low-training (LT, <100 km/week) and high-training (HT, ≥100 km/week), 22 athletes per group. Twenty-one sedentary participants were used as reference. IL-6, sIL-6R and sgp130 levels were measured in plasma samples obtained before and immediately after finishing a marathon (42.2-km). Aortic diameter was measured by echocardiography. The inhibitory effect of sIL-6R on IL-6-induced VSMC migration was assessed using cultured A7r5 VSMCs. Basal plasma IL-6 and sIL-6R levels were similar among sedentary and athlete groups. Plasma IL-6 and sIL-6R levels were elevated after the marathon, and HT athletes had higher post-race plasma sIL-6R, but not IL-6, level than LT athletes. No changes in sgp130 plasma levels were found in LT and HT groups before and after running the marathon. Athletes had a more dilated ascending aorta and aortic root than sedentary participants with no differences between HT and LT athletes. However, a positive correlation between ascending aorta diameter and plasma IL-6 levels corrected by training load and years of training was observed. IL-6 could be responsible for aorta dilation because IL-6 stimulated VSMC migration in vitro, an effect that is inhibited by sIL-6R. However, IL-6 did not modify cell proliferation, collagen type I and contractile protein of VSMC. Our results suggest that exercise induces vascular remodeling. A possible association with IL-6 is proposed. Because sIL-6R inhibits IL-6-induced VSMC migration, a possible mechanism to regulate IL-6-dependent VSMC migration is also proposed.
AB - Little is known about the effects of training load on exercise-induced plasma increase of interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) and their relationship with vascular remodeling. We sought to evaluate the role of sIL 6R as a regulator of IL-6-induced vascular remodeling. Forty-four male marathon runners were recruited and allocated into two groups: low-training (LT, <100 km/week) and high-training (HT, ≥100 km/week), 22 athletes per group. Twenty-one sedentary participants were used as reference. IL-6, sIL-6R and sgp130 levels were measured in plasma samples obtained before and immediately after finishing a marathon (42.2-km). Aortic diameter was measured by echocardiography. The inhibitory effect of sIL-6R on IL-6-induced VSMC migration was assessed using cultured A7r5 VSMCs. Basal plasma IL-6 and sIL-6R levels were similar among sedentary and athlete groups. Plasma IL-6 and sIL-6R levels were elevated after the marathon, and HT athletes had higher post-race plasma sIL-6R, but not IL-6, level than LT athletes. No changes in sgp130 plasma levels were found in LT and HT groups before and after running the marathon. Athletes had a more dilated ascending aorta and aortic root than sedentary participants with no differences between HT and LT athletes. However, a positive correlation between ascending aorta diameter and plasma IL-6 levels corrected by training load and years of training was observed. IL-6 could be responsible for aorta dilation because IL-6 stimulated VSMC migration in vitro, an effect that is inhibited by sIL-6R. However, IL-6 did not modify cell proliferation, collagen type I and contractile protein of VSMC. Our results suggest that exercise induces vascular remodeling. A possible association with IL-6 is proposed. Because sIL-6R inhibits IL-6-induced VSMC migration, a possible mechanism to regulate IL-6-dependent VSMC migration is also proposed.
UR - http://www.scopus.com/inward/record.url?scp=85117760625&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117760625&partnerID=8YFLogxK
U2 - 10.3389/fphys.2021.722528
DO - 10.3389/fphys.2021.722528
M3 - Article
AN - SCOPUS:85117760625
SN - 1664-042X
VL - 12
JO - Frontiers in Physiology
JF - Frontiers in Physiology
M1 - 722528
ER -