Implant Failure Prediction Using Discriminant Analysis

Cheol Jeong, Panos N. Papapanou, Joseph Finkelstein

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Electronic dental records (EDR) provide access to a vast repository of clinical information which may be used for analyzing dental care delivery. The goal of this study was identification of determinants of implant survival and development of implant failure prediction model using large data set of intact and failed implant parameters extracted from EDR. A retrospective analysis of 19 variables reflecting patient, surgeon and dental treatment characteristics of 800 dental implants was performed using discriminant analysis to develop a predictive model identifying potential implant failure based on characteristics routinely available in a clinical care setting. The intact and failed implant characteristics were compared using the Goodman and Kruskal's lambda test, the point-biserial test, the chi-square test, and ANOVA test. A stepwise discriminant analysis reduced model dimensionality from 19 to 4 features. The final discriminant analysis model included the following variables: non-temporary implant, pre-op antibiotics, immunocompromised status, and gender. Overall, 72% of implant failure cases and 62% of intact implants were correctly identified by the resulting discriminant function. As the final predictive feature set is readily available in EDR, the resulting algorithm may be implemented as a clinical decision support module embedded into EDR to promote personalized approach in dental implant patients.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3433-3437
Number of pages5
ISBN (Electronic)9781538613115
DOIs
Publication statusPublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: Jul 23 2019Jul 27 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period7/23/197/27/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

ASJC Scopus Subject Areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Implant Failure Prediction Using Discriminant Analysis'. Together they form a unique fingerprint.

Cite this