TY - GEN
T1 - Implant Failure Prediction Using Discriminant Analysis
AU - Jeong, Cheol
AU - Papapanou, Panos N.
AU - Finkelstein, Joseph
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - Electronic dental records (EDR) provide access to a vast repository of clinical information which may be used for analyzing dental care delivery. The goal of this study was identification of determinants of implant survival and development of implant failure prediction model using large data set of intact and failed implant parameters extracted from EDR. A retrospective analysis of 19 variables reflecting patient, surgeon and dental treatment characteristics of 800 dental implants was performed using discriminant analysis to develop a predictive model identifying potential implant failure based on characteristics routinely available in a clinical care setting. The intact and failed implant characteristics were compared using the Goodman and Kruskal's lambda test, the point-biserial test, the chi-square test, and ANOVA test. A stepwise discriminant analysis reduced model dimensionality from 19 to 4 features. The final discriminant analysis model included the following variables: non-temporary implant, pre-op antibiotics, immunocompromised status, and gender. Overall, 72% of implant failure cases and 62% of intact implants were correctly identified by the resulting discriminant function. As the final predictive feature set is readily available in EDR, the resulting algorithm may be implemented as a clinical decision support module embedded into EDR to promote personalized approach in dental implant patients.
AB - Electronic dental records (EDR) provide access to a vast repository of clinical information which may be used for analyzing dental care delivery. The goal of this study was identification of determinants of implant survival and development of implant failure prediction model using large data set of intact and failed implant parameters extracted from EDR. A retrospective analysis of 19 variables reflecting patient, surgeon and dental treatment characteristics of 800 dental implants was performed using discriminant analysis to develop a predictive model identifying potential implant failure based on characteristics routinely available in a clinical care setting. The intact and failed implant characteristics were compared using the Goodman and Kruskal's lambda test, the point-biserial test, the chi-square test, and ANOVA test. A stepwise discriminant analysis reduced model dimensionality from 19 to 4 features. The final discriminant analysis model included the following variables: non-temporary implant, pre-op antibiotics, immunocompromised status, and gender. Overall, 72% of implant failure cases and 62% of intact implants were correctly identified by the resulting discriminant function. As the final predictive feature set is readily available in EDR, the resulting algorithm may be implemented as a clinical decision support module embedded into EDR to promote personalized approach in dental implant patients.
UR - http://www.scopus.com/inward/record.url?scp=85070680583&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070680583&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2019.8856783
DO - 10.1109/EMBC.2019.8856783
M3 - Conference contribution
C2 - 31946617
AN - SCOPUS:85070680583
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 3433
EP - 3437
BT - 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Y2 - 23 July 2019 through 27 July 2019
ER -