Integrating soft and hard tissues via interface tissue engineering

Sahishnu Patel, Jon Michael Caldwell, Stephen B. Doty, William N. Levine, Scott Rodeo, Louis J. Soslowsky, Stavros Thomopoulos, Helen H. Lu

Research output: Contribution to journalReview articlepeer-review

100 Citations (Scopus)

Abstract

The enthesis, or interface between bone and soft tissues such as ligament and tendon, is prone to injury and often does not heal, even post surgical intervention. Interface tissue engineering represents an integrative strategy for regenerating the native enthesis by functionally connecting soft and hard tissues and thereby improving clinical outcome. This review focuses on integrative and cell-instructive scaffold designs that target the healing of the two most commonly injured soft tissue-bone junctions: tendon-bone interface (e.g., rotator cuff) and ligament-bone interface (e.g., anterior cruciate ligament). The inherent connectivity between soft and hard tissues is instrumental for musculoskeletal motion and is therefore a key design criterion for soft tissue regeneration. To this end, scaffold design for soft tissue regeneration have progressed from single tissue systems to the emerging focus on pre-integrated and functional composite tissue units. Specifically, a multifaceted, bioinspired approach has been pursued wherein scaffolds are tailored to stimulate relevant cell responses using spatially patterned structural and chemical cues, growth factors, and/or mechanical stimulation. Moreover, current efforts to elucidate the essential scaffold design criteria via strategic biomimicry are emphasized as these will reduce complexity in composite tissue regeneration and ease the related burden for clinical translation. These innovative studies underscore the clinical relevance of engineering connective tissue integration and have broader impact in the formation of complex tissues and total joint regeneration.

Original languageEnglish
Pages (from-to)1069-1077
Number of pages9
JournalJournal of Orthopaedic Research
Volume36
Issue number4
DOIs
Publication statusPublished - Apr 2018

Bibliographical note

Publisher Copyright:
© 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Funding

This work was supported by the National Institutes of Health (HHL, R01-AR055280), the DoD CDMRP (HHL&WNL, W81XWH-15-1-0685), the SEAS Translational Fellows Program (SP), and the New York State Stem Cell ESSC Board (NYSTEM Training Grant—Postdoctoral Fellowship for SP).

FundersFunder number
DoD CDMRPW81XWH-15-1-0685
HHLR01-AR055280
National Institutes of Health
National Institute of Arthritis and Musculoskeletal and Skin DiseasesR01AR055280
Harvard School of Engineering and Applied Sciences
New York State Stem Cell Science

    ASJC Scopus Subject Areas

    • Orthopedics and Sports Medicine

    Fingerprint

    Dive into the research topics of 'Integrating soft and hard tissues via interface tissue engineering'. Together they form a unique fingerprint.

    Cite this